b. display & window之事件

Android系统的事件输入基于linux的Input子系统。触控屏事件和按键事件,从哪里输入又往哪里输出,虽然这个流程大部分对于Android系统来说是透明的,但是在多display,多窗口,多屏幕的情况下是值得研究的。

input对应各种输入事件,通过IMS,WMS,给到对应的window去处理事件,附一张最简化的事件传递流程:

image-20240207-064415.png

1. Android Input子系统简介

1.1 事件的输入

事件的输入,是从不同类获的设备得到不同的事件类型,事件类型也都是定义在/include/linux/input.h文件中。

adb shell getevent -l -c 16 add device 1: /dev/input/event0 name: "ACCDET" add device 2: /dev/input/event3 name: "goodix_ts" add device 3: /dev/input/event2 name: "aw8697_haptic" add device 4: /dev/input/event1 name: "mtk-kpd" //按键 adb shell getevent -l /dev/input/event1 EV_KEY KEY_VOLUMEDOWN DOWN EV_SYN SYN_REPORT 00000000 EV_KEY KEY_VOLUMEDOWN UP EV_SYN SYN_REPORT 00000000 EV_KEY KEY_VOLUMEUP DOWN EV_SYN SYN_REPORT 00000000 EV_KEY KEY_VOLUMEUP UP EV_SYN SYN_REPORT 00000000 //触摸 adb shell getevent -l /dev/input/event3 EV_ABS ABS_MT_TRACKING_ID 0000036c EV_ABS ABS_MT_POSITION_X 000001fe EV_ABS ABS_MT_POSITION_Y 00000717 EV_KEY BTN_TOUCH DOWN EV_SYN SYN_REPORT 00000000 EV_ABS ABS_MT_POSITION_X 00000207 EV_SYN SYN_REPORT 00000000 EV_ABS ABS_MT_POSITION_X 00000219 EV_ABS ABS_MT_POSITION_Y 00000716

Android设备可以同时连接多个输入设备,比如说触摸屏,键盘,鼠标等等。用户在任何一个设备上的输入就会产生一个中断,经由Linux内核的中断处理以及设备驱动转换成一个Event,并专递给用户空间的应用程序进行处理。每个输入设备都有自己的驱动程序,数据接口也不尽相同,如何在一个线程里(上面说过只有一个nputReader Thread)把所有的用户输入都给捕捉到:这首先要归功于Linux 内核的输入子系统 (Input Subsystem),它在各种各样的设备驱动程序上加了一个抽象层,只要底层的设备驱动程席按照这层抽象接口来实现,上层应用就可以通过统的接口来访问所有的输入设备。

1.2 事件在IMS中的流程

输入子系统对input设备和event处理分发的枢纽是EventHub,以下构造函数,主要是通过mEpollFd和mINotifyFd监听input事件和设备增删事件:

EventHub::EventHub(void) : mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(), mNeedToSendFinishedDeviceScan(false), mNeedToReopenDevices(false), mNeedToScanDevices(true), mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) { ensureProcessCanBlockSuspend(); mEpollFd = epoll_create1(EPOLL_CLOEXEC); LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno)); mINotifyFd = inotify_init(); mInputWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE); LOG_ALWAYS_FATAL_IF(mInputWd < 0, "Could not register INotify for %s: %s", DEVICE_PATH, strerror(errno)); if (isV4lScanningEnabled()) { mVideoWd = inotify_add_watch(mINotifyFd, VIDEO_DEVICE_PATH, IN_DELETE | IN_CREATE); LOG_ALWAYS_FATAL_IF(mVideoWd < 0, "Could not register INotify for %s: %s", VIDEO_DEVICE_PATH, strerror(errno)); } else { mVideoWd = -1; ALOGI("Video device scanning disabled"); } struct epoll_event eventItem = {}; eventItem.events = EPOLLIN | EPOLLWAKEUP; eventItem.data.fd = mINotifyFd; int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno); int wakeFds[2]; result = pipe(wakeFds); LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); mWakeReadPipeFd = wakeFds[0]; mWakeWritePipeFd = wakeFds[1]; result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK); LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d", errno); result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK); LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d", errno); eventItem.data.fd = mWakeReadPipeFd; result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem); LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d", errno); }

这个方法的调用在InputReader里面启了一个线程,循环调用去读事件mEventHub->getEvents和处理 processEventsLocked(mEventBuffer, count);

status_t InputReader::start() { if (mThread) { return ALREADY_EXISTS; } mThread = std::make_unique<InputThread>( "InputReader", [this]() { loopOnce(); }, [this]() { mEventHub->wake(); }); return OK; } ... void InputReader::loopOnce() { int32_t oldGeneration; int32_t timeoutMillis; bool inputDevicesChanged = false; std::vector<InputDeviceInfo> inputDevices; { // acquire lock std::scoped_lock _l(mLock); oldGeneration = mGeneration; timeoutMillis = -1; uint32_t changes = mConfigurationChangesToRefresh; if (changes) { mConfigurationChangesToRefresh = 0; timeoutMillis = 0; refreshConfigurationLocked(changes); } else if (mNextTimeout != LLONG_MAX) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout); } } // release lock size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE); if (count) { processEventsLocked(mEventBuffer, count); } ... // mEventHub->getEvents mLock.unlock(); // release lock before poll int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis); mLock.lock(); // reacquire lock after poll
status_t InputReader::start() { if (mThread) { return ALREADY_EXISTS; } mThread = std::make_unique<InputThread>( "InputReader", [this]() { loopOnce(); }, [this]() { mEventHub->wake(); }); return OK; } ... void InputReader::loopOnce() { int32_t oldGeneration; int32_t timeoutMillis; bool inputDevicesChanged = false; std::vector<InputDeviceInfo> inputDevices; { // acquire lock std::scoped_lock _l(mLock); oldGeneration = mGeneration; timeoutMillis = -1; uint32_t changes = mConfigurationChangesToRefresh; if (changes) { mConfigurationChangesToRefresh = 0; timeoutMillis = 0; refreshConfigurationLocked(changes); } else if (mNextTimeout != LLONG_MAX) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout); } } // release lock size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE); if (count) { processEventsLocked(mEventBuffer, count); } ... // mEventHub->getEvents mLock.unlock(); // release lock before poll int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis); mLock.lock(); // reacquire lock after poll

输入事件处理,从这里找到指定的设备来处理。

void InputReader::processEventsForDeviceLocked(int32_t eventHubId, const RawEvent* rawEvents, size_t count) { auto deviceIt = mDevices.find(eventHubId); if (deviceIt == mDevices.end()) { ALOGW("Discarding event for unknown eventHubId %d.", eventHubId); return; } std::shared_ptr<InputDevice>& device = deviceIt->second; if (device->isIgnored()) { // ALOGD("Discarding event for ignored deviceId %d.", deviceId); return; } device->process(rawEvents, count); }

再之后经过一系统复杂的调用,到InputDispacher来进行分发,具体分析流程可以见博文,讲得非常详细https://www.jianshu.com/p/d10cfe854654 ,同时在这些调用中,可以发现安卓事件分发响应为啥这么耗时,因为这里面流程复杂,且有相当多的耗时函数。这里的注释意思是所有事件都要保存按顺序执行。

// Process all of the events in order for each mapper. // We cannot simply ask each mapper to process them in bulk because mappers may // have side-effects that must be interleaved. For example, joystick movement events and // gamepad button presses are handled by different mappers but they should be dispatched // in the order received.

分发过程中,要确定targetdisplayid,inputTargets,就是拿到channels。

bool InputDispatcher::dispatchKeyLocked(nsecs_t currentTime, std::shared_ptr<KeyEntry> entry, DropReason* dropReason, nsecs_t* nextWakeupTime) { // Preprocessing. ... // Add monitor channels from event's or focused display. addGlobalMonitoringTargetsLocked(inputTargets, getTargetDisplayId(*entry)); // Dispatch the key. dispatchEventLocked(currentTime, entry, inputTargets); return true; }

InputPublisher通过 InputChannel::sendMessage将DispatchEntry发送给焦点窗口,而InputChannel的创建也就到了WMS给每个应用进程创建window的过程。

2. Input与WMS的连接InputChannel

IMS里面InputChannel::sendMessage发送消息

void InputDispatcher::dispatchEventLocked(nsecs_t currentTime, std::shared_ptr<EventEntry> eventEntry, const std::vector<InputTarget>& inputTargets) { ATRACE_CALL(); #if DEBUG_DISPATCH_CYCLE ALOGD("dispatchEventToCurrentInputTargets"); #endif updateInteractionTokensLocked(*eventEntry, inputTargets); ALOG_ASSERT(eventEntry->dispatchInProgress); // should already have been set to true pokeUserActivityLocked(*eventEntry); for (const InputTarget& inputTarget : inputTargets) { sp<Connection> connection = getConnectionLocked(inputTarget.inputChannel->getConnectionToken()); if (connection != nullptr) { prepareDispatchCycleLocked(currentTime, connection, eventEntry, inputTarget); } else { if (DEBUG_FOCUS) { ALOGD("Dropping event delivery to target with channel '%s' because it " "is no longer registered with the input dispatcher.", inputTarget.inputChannel->getName().c_str()); } } }

最终会调到enqueueDispatchEntryLocked里的 connection->outboundQueue.push_back(dispatchEntry.release());

void InputDispatcher::enqueueDispatchEntryLocked(const sp<Connection>& connection, std::shared_ptr<EventEntry> eventEntry, const InputTarget& inputTarget, int32_t dispatchMode) { ... // Enqueue the dispatch entry. connection->outboundQueue.push_back(dispatchEntry.release()); traceOutboundQueueLength(*connection); }

发送消息和选取window是事件需要处理的两个问题,当确定哪个inputchannel的时候就已经有这两个答案了。

InputChannel其实就是linux unix socket的一种封装, unixsocket是linux的一种跨进程通信方式。系统创建InputChannel对即unix socket对,系统server端和程序client各只有其中一个,这样通过unix socket就可以给对方发送消息,而这里的事件就是通过这种方式从系统进程传递到程序进程的。系统InputChannel的整个处理逻辑如下:

image-20240218-015217.png

在上篇中,viewroot创建时会根据需要创建一个inputchannel,传递给wms,window创建完之后,WMS addwindow的过程中,创建channel对,一个保存在window里,另一个传到程序端。

/** * Does not construct an input channel for this window. The channel will therefore * be incapable of receiving input. * * @hide */ public static final int INPUT_FEATURE_NO_INPUT_CHANNEL = 0x00000002; if ((mWindowAttributes.inputFeatures & WindowManager.LayoutParams.INPUT_FEATURE_NO_INPUT_CHANNEL) == 0) { mInputChannel = new InputChannel(); }
void openInputChannel(InputChannel outInputChannel) { if (mInputChannel != null) { throw new IllegalStateException("Window already has an input channel."); } String name = getName(); InputChannel[] inputChannels = InputChannel.openInputChannelPair(name); mInputChannel = inputChannels[0]; mClientChannel = inputChannels[1]; mInputWindowHandle.token = mClient.asBinder(); if (outInputChannel != null) { mClientChannel.transferTo(outInputChannel); mClientChannel.dispose(); mClientChannel = null; } else { // If the window died visible, we setup a dummy input channel, so that taps // can still detected by input monitor channel, and we can relaunch the app. // Create dummy event receiver that simply reports all events as handled. mDeadWindowEventReceiver = new DeadWindowEventReceiver(mClientChannel); } mWmService.mInputManager.registerInputChannel(mInputChannel, mClient.asBinder()); }

InputChannel.openInputChannelPair(name)在实现在native中,

frameworks/base/core/jni/android_view_inputChannel.cpp,frameworks/native/libs/input/InputTransport.cpp

通过registerInputChannel注册到native层。客户端ViewRootImpl.setView的时候会把创建的inputchannel,注册并加到线程的looper里面。

public InputEventReceiver(InputChannel inputChannel, Looper looper) { if (inputChannel == null) { throw new IllegalArgumentException("inputChannel must not be null"); } if (looper == null) { throw new IllegalArgumentException("looper must not be null"); } mInputChannel = inputChannel; mMessageQueue = looper.getQueue(); mReceiverPtr = nativeInit(new WeakReference<InputEventReceiver>(this), inputChannel, mMessageQueue); mCloseGuard.open("dispose"); }

frameworks/base/core/jni/android_view_inputEventReceiver.cpp

status_t NativeInputEventReceiver::initialize() { setFdEvents(ALOOPER_EVENT_INPUT); return OK; }
void NativeInputEventReceiver::setFdEvents(int events) { if (mFdEvents != events) { mFdEvents = events; int fd = mInputConsumer.getChannel()->getFd(); if (events) { mMessageQueue->getLooper()->addFd(fd, 0, events, this, nullptr); } else { mMessageQueue->getLooper()->removeFd(fd); } } }

至此InputChannel在ViewRootImpl中创建,在wms中创建连接socket,保存到IMS的连接池的过程就完成了。Input子系统的事件可以传到应用进程了。当接收到事件的时候,就会在应用层按如下流程处理,基本都是标准流程,就不展开说明了。

image-20240218-015753.png

Anrdoid事件流程流程大体如文中几个图所示,需要特别注意的是:对系统来说,Inputdispatcher.cpp是一个非常重要的类,event的监听,设备的监听,与client端channel的连接,window的分发都是由他来处理的。

参考资料